Section

30 CSS Radial Bond Services

Computer Sonics produces two types of radial bond tool. One (the earlier model, though still produced) is known as the sequential tool. This tool has four modes of operation:

3 ft.- 5 ft. mode for generating the conventional dual spaced CBL radial mode for generating the eight receiver radial bond log (RBL)

calibration mode for generating the internal calibration signal open hole mode

The tool is switched from mode to mode and to acquire data for a complete log two passes must be made over the log interval, one in CBL mode and one in RBL.

The later tool model generates all the required signals simultaneously and is known as the multiplexed tool. Both tools transmit nuclear, collar, and temperature log data in a digital form interleaved with analog sonic data. The telemetry scheme employed is not the same for the two tools, however in both cases it is detected and decoded in the Warrior system by DSP software through selection of the appropriate script command.

The sequential tool transmits acoustic signals on the wireline at their natural frequency (approximately 20 – 25 kHz). The multiplexed tool divides the downhole frequency by a factor of four before transmission to the surface, therefore the frequency of the tool signals on the line is approximately 6 kHz. Special provision must be made for this feature in the logging system in the form of a special filter / amplifier card that can be switched to accommodate conventional as well the CSS multiplexed tool.

In both tools CSS has provided an internal calibration signal which can be used for a well site calibration which does not rely on finding (assuming) free pipe in the well. For both tools the philosophy is the same, namely the tool is calibrated in a known environment (zero signal and a calibration pipe) and the internal calibrate signal evaluated. The calibrations for all the receivers and the value of the internal calibration signal are recorded by tool serial number. This procedure is termed the shop or master calibration. At the well site the receiver zero signals and internal calibration signal are re-evaluated and corrections made to reproduce the readings obtained during the shop calibration. In this way any changes in signal amplitudes due to electronic drift, differences in wireline and other factors may be minimized.

The 3 ft receiver signal curve is calibrated to industry standard values. The sector signals are normalized to a given log amplitude during the shop calibration for calibration pipe diameter. When logging casing of other diameters the sector amplitudes are adjusted to produce the same log deflection and cement map appearance.

30.1 SDSTIP

The gains and filters for the CSS tools should be setup as follows:

From Acquisition Window Select 'Edit/Device Configuration/SDSTIP'

For the CSSM 1 11/16" tool, with Short to medium lines the following values should be entered in the SDSTIP Panel.

	Panel Contro	ols	SDS Tool Interface Panel Configuration
Max 1	Max 🔳	Max 🔟	Gain Q Fc Sonic ? 2.00 24000 C HighPass
			Sync ? 0.50 0.33 69 C BandPass HighPass
 Min	Min +	 Min	AUX ? 0.10 0.33 1000 C BandPass For Sonic Pre-Filter
53 Sync Gain	70 Aux Gain	55 Sonic Gain	Apply Settings Cancel OK

FIG: 30.1SDS Tool Interface Panel Configurations 1 11/16 Short to Medium Lines

The Gains set the maximum gain for the Panel Control Slider bars and should be set to give a usable range for the slider bars depending on line length and tool signal.

The Sonic line is for the Sonic signal.

The Sync line is for the Sync signal.

The Aux line is for the Telemetry signal.

The FC is the frequency of the signal being detected. The Q is the sharpness of the filter, the higher the Q the sharper the cutoff frequency. Band Pass or High Pass is the type filter used.

The FC for the Sonic Line should be set for the frequency of the sonic receiver crystals, with a Band Pass Filter.

The FC for the Sync Line usually works best with a low Q and Low FC, with a High Pass Filter.

The FC for the Aux Line has been tested for short to medium lines and medium to long lines, and should be entered as shown.

For the CSSM 1 11/16" tool, with medium to long lines the following values should be entered in the SDSTIP Panel.

		Gain	Q	Fc	
Sonic	?	2.00	2.00	24000	 BandPass HighPass
Sync	?	0.50	0.33	69	BandPass HighPass
AUX	?	0.10 Sonic	0.33 Pre-Filte	1000	BandPass HighPass

FIG: 30.2 SDS Tool Interface Panel Configurations 1 11/16 Medium to Long Lines

For the CSSM 3 1/8" tool, with short to medium lines the following values should be entered in the SDSTIP Panel.

Sonic	?	Gain	Q 2.00	Fc	 BandPass
Sync	?	0.10	0.40	69	 HighPass BandPass HighPass
AUX	?	0.05	0.33 Pre-Filte	1000 d	BandPass HighPass

FIG: 30.3 SDS Tool Interface Panel Configurations 3 1/8 Short to Medium Lines

For the CSSM 3 1/8" tool, with medium to long lines the following values should be entered in the SDSTIP Panel.

		Gain	Q	Fc	C D (D
Sonic	?	1.00	2.00	6000	 BandPass HighPass
Sync	?	0.10	0.40	69	 ○ BandPass ○ HighPass
AUX	?	0.05	0.80 Pre-Filter	10000	 ○ BandPass ● HighPass

FIG: 30.4 SDS Tool Interface Panel Configurations 3 1/8 Medium to Long Lines

These values are not set and stone and may have to be tweaked for individual situations.

30.2 Acquisition

After starting Acquisition, the first step when running a Bond Tool of any type on Warrior will be to set the proper casing size.. This will ensure that the gates will default to the correct saved settings.

30.2.1 Edit

Click on the Edit menu box of the Warrior Logging System menu box and scroll down to and select Variables.

30.2.2 Variables

Displays the Variable (parameter) editor window, enabling depth dependent parameters associated with the selected service to be zoned and values to be set.

Z	ones	Accept		Undo		Close	
Teur	BOTTEMP degF	TDEPTH ft	PERFS	CASEOD in	MINATTN db/ft	MINAMPL mV	
Top Jottom	100	0	0	5.5	0.8	1	

Check the proper Casing OD under CASEOD. If you are outputting a Bond Index curve, enter the Minimum and Maximum Amplitudes. Enter any other variables that may be required. Then push the Accept button. The Minimum and Maximum Amplitude values are used for calculating the Bond Index Curve. Of these

values the MINAMPL will have the greatest impact upon the calculations. The proper values are listed in Appendix A. Also, the MINATTN value is typical for most standard casings.

FIG: 30.5 SDS Variables

30.2.3 Edit Logging Services Details

From the Warrior Logging System menu box, click on Services and select the proper service for the tool type. Tools have different telemetry schemes and the services must be set up to match the telemetry.

30.2.4 Edit logging Tools details

When the Service is selected the Edit Toolstring Window will come up automatically. Or, select Edit and Tool String, to display the following window:

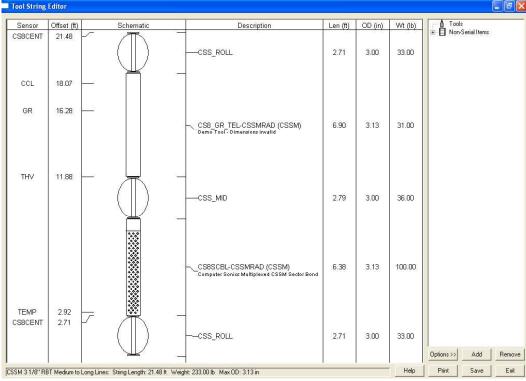


FIG: 30.6 Toolstring

From this window it is possible to change the tool being run, the order of the tools in the string, and add or delete centralizers, weight bars, knuckle joints or other tool string components. It is from the information set in this window that the calibrations, default offsets and filters settings for the log to be run are derived.

30.2.5 Tool String

Depth offsets that were derived from the Edit - Tool String step may be viewed by choosing Edit - Sensors, to display the following window:

Edit Select				
Name	Device	Chan	Offset	SPF
TEL	DSP	27		
WVF3FT	DSP	27 2 5 3 4 19	2.71 2.71 2.71 2.71 2.71 2.71	4
WVFCAL	DSP	5	2.71	4
WVF5FT	DSP	3	2.71	4
WVFSUM	DSP	4	2.71	4
WVFS1	DSP	19	2.71	4
WVFS2	DSP	23	2.71	4
WVFS3	DSP	20	2.71 2.71 2.71	4 4 4 4 4 4
WVFS4	DSP	24	2.71	4
WVFS5	DSP	21 25 22	2.71 2.71 2.71 2.71 2.71 2.71	4
WVFS6	DSP	25	2.71	4
WVFS7	DSP	22	2.71	4
WVFS8	DSP	26	2.71	4
WVFSYNC	DSP	1	2.71	4
LSPD	BASE	21		4
LTEN	BASE	7		4
TCURR	BASE	7 1 22 23 22		2
TVOLT	BASE	2		2
ELTIM	BASE	22		4
ADPTH	BASE	23		4
MINMK	BASE	22		4 4 4 4 2 4 4 2 4 4 2 4
TEMP	DSP	13	2.92	
CCL	DSP	16	18.07	20
GR	DSP	7	16.28	4
THV	DSP	12	11.88	4

FIG: 30.7 Edit Sensors

These offsets may be edited from this window, by double clicking on a sensor. The information in this window normally consists of the hardware source of the sensor (Device and Channel number), the depth offset of the sensor from tool zero reference, and the sampling rate.

The information contained in Edit Sensors is defaulted to the current service and current tool string information. For example, sensor depth offsets are derived from the selected tool string and the information contained in the tools database. The default sample rates and device channel assignments are derived from the services file. The default device and channel settings, and the default sample rates are contained in the tools. The default depth offsets are derived from tool information contained in the tools. The default depth offsets are derived from tool information contained in the tools. The default depth offsets are derived from tool information contained in the tools.

Sensors can not be modified while in a record mode.

It is important to know that no permanent changes are saved from this window. If you change anything in the Edit Tool String window and save them, any changes under Edit Sensors will be deleted when the service is closed. If you have to edit offsets in the Edit Sensor window the Tool.ini file should be modified.

30.2.6 Power Up

Power up the tool string. (Nominally 125V at the STIP)

Adjusting the sync. Start by turning the Panel Control 'Sync' slider bar all the way down. Monitor the Waveform Window and slowly raise the Slider Bar. In the Waveform Window you will see the 0/s changes to typically 3/s or 4/s on the 1 11/16" tool and 7/s or 8/s for the 3 1/8" tool. At this point the waveforms are synced. The PMON Window is used to adjust the telemetry thresholds. (This window will be hidden behind the Waveform window, and must be brought to the front.) On the PMON Window the left arrow adjusts the positive threshold and the right arrow the negative threshold.

Adjusting CSS Telemetry sync. While looking at the PMON window, adjust the positive (+) and negative (-) thresholds to about 50%. Adjust the Panel Control 'AUX' Slider to adjust the height of the digital signal, until the pulses are just below saturation

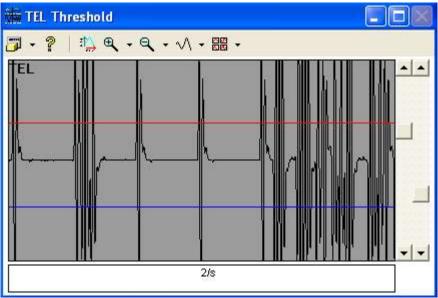


FIG: 30.8 Tel threshold

The PMON discriminator values will be what is saved in the 'Source/Save Setup' for this service. *Options - View Axis Scaling* may be used to more accurately set these values. This window is digital. The screen will not update until waveform sync is established. Select *Source/Save Setup* to retain these values for your next log.

30.2.7 Telemetry Verifying Telemetry Data:

From Warrior Acquisition Window -Select Monitor/ Devices/ DSP:

FIG: 30.9 Devices

Values for CSSM 3 1/8" Radial Bond Tool

Source	Name	Value	Units
BASE-1	TCURR	0.0656	٧
BASE-2	TVOLT	0.0095	V
BASE-3	CCL	-0.0034	V
BASE-4		9,9997	٧
BASE-5		0,1865	V
BASE-6		-0.0327	V
BASE-7	LTEN	1.0306	V
BASE-8		0.0052	V
BASE-9		-0.0095	٧
BASE-10		-0.0095	V
BASE-11		-0.0397	V
BASE-12		-0.0336	V
BASE-13		-0.0354	V
BASE-14		-0.0330	V
BASE-15		-0.0333	V
BASE-16		-0.0079	V
BASE-17	CTR1	0.0000	cps
BASE-18	CTR2	0.0000	cps
BASE-19	CTR3	0.0000	cps
BASE-20	CTR4	0.0000	cps
BASE-21	LSPD	-20.6300	ft/min
BASE-22	ELTIM	523.2700	sec
BASE-23	ADPTH	9776.6000	ft

FIG: 30.10 Devices List

The above values are very close to what the tool normally reads. Monitor TEL5-CCL, TEL7-Cable head voltage and TEL8-Temperature for stable readings. If necessary adjust the positive threshold in the PMON window up or down to stabilize the readings.

30.2.8 Monitoring Outputs.

From Warrior Acquisition Window select Monitor /Outputs. *An* Outputs window will appear that allows you to monitor signals such as CCL, GR, and other sensors.

🔲 Output	Outputs		
Name	Source	Value	Units
AMP3FT	[CS8SCBL	19.8975	mV
TT3FT	[CS8SCBL	218.9651	usec
AMPCAL	[CS8SCBL	0.2441	m٧
AMP5FT	[CS8SCBL	0.0586	m٧
TT5FT	[CS8SCBL	327.5909	usec
AMPSUM	[CS8SCBL	0.1807	mΨ
AMPS1	[CS8SCBL	0.2902	
AMPS2	[CS85CBL	0.2308	
AMPS3	[CS8SCBL	0.2189	
AMPS4	[CS8SCBL	0.2037	
AMPS5	[CS8SCBL	0.2240	
AMPS6	[CS8SCBL	0.2733	
AMPS7	[CS8SCBL	0.3530	
AMPS8	[CS8SCBL	0.3072	
AMPMIN	[CS8SCBL	0.2037	
AMPMAX	[CS85CBL	0.3530	
AMPAVG	[CS8SCBL	0.2627	
ATT3	[CS8SCBL	-4.5204	db/ft
BONDIX	[CS8SCBL	0.3430	
LSPD	[STD]	-20.6300	ft/min
LTEN	[STD]	1.0306	Ь
TCURR	[STD]	0.0644	mA
TVOLT	[STD]	0.0089	¥.
ELTIM	[STD]	455.8200	sec
ADPTH	[STD]	9782.0498	ft
MINMK	[STD]	0.0000	
LTENRT	[STD]	1.0306	Ь
DLTENRT	[STD]	0.0009	Ь
LSPDRT	[STD]	-20,6300	ft/min
HVOLTA	[STD]	0.0056	V
TEMP	[CS85CBL	2020.0000	degF
DTMP	[CS85CBL	0.0000	degF
CCL	[CS8_GR	7739.0000	0.010735
CCLRT	[CS8_GR	7739.0000	
GR	[CS8_GR	14.0000	
THV	[CS8_GR	12018.0000	۷

FIG: 30.11 Outputs List

Continue to Shop Calibration Section.

30.3 Shop / Tank Calibration:

Make up the tool with the centralizers and slide it into the tank. The tool should show signals on all of the signals in the Waveform Window.

Bring the Waveform Window to the front. The gates appear on the waveforms as a white line on the section of the waveform where they are set.

The gates can be changed on this window by clicking on the waveform that needs to be adjusted (note the dark border around the selected waveform) and then using the buttons in the top right corner of the Waveform Window. To move the gate right or left on the x-axis use the buttons labeled \leq to move it to the left or the button labeled \geq to move the gate to the right. The width of the gate can be increased by selecting the $< \pm$ button and decreased by using the $> \pm <$ button.

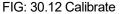
Note: It is recommended that you keep all of your gate widths the same. Approximatly 30 micro-seconds works well with most tool types.

Also, specific waveforms can be viewed by selecting Options – Enable, and selecting the waveforms that you want displayed. Reducing the number of waveforms gives you a screen that is easier to work with. Remember to click on the waveform before adjusting the gates.

Before gating on the first arrival use the ('BHC/CBL' pot on the panel for CBL01-09 sytems) (Panel Control 'Sonic' Slider Bar on CBLDR systems) to increase/decrease the signal. Make sure that none of the signals are saturated. (If you are going to be running logs in casing that is smaller than your calibration tank, be aware that the signals will be larger in smaller casings and decrease your signal to accomodate this.) **Note:** The signal height on the screen is not valid if you are in threshold mode.

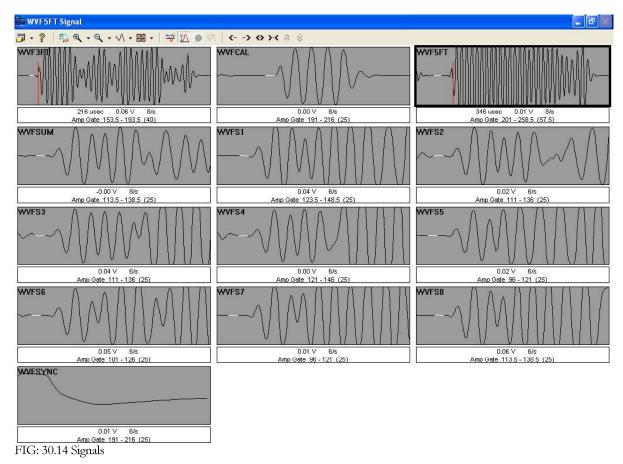
After all of the gates are set select *Source – Save As*. Give this setup a name, such as 'CSSM 1 11/16' Cal Tank Amplitudes.' If there is a problem later the setting can be restored by selecting Source – Load and selcting that setup name.

Note: The same can be done for settings on the PMON Window.


AT THIS POINT YOU SHOULD HAVE YOUR GATE (WHITE LINE) ON ALL THE FIRST <u>POSITVE</u> ARRIVALS OF ALL THE SIGNALS BEING DISPLAYED. (The CAL pulse first arrival should be positive. If the first arrival is not positive, the polarity can be changed through Warrior/Utilities/Edit Logging Tool Details.)

On the Waveform Window, select Source – Threshold Mode and use the UP/DOWN Arrows (Only on the 3 ft and 5 ft display). To move the red threshold line to a suitable position where the threshold cuts the first arrival. Make sure it is far enough to avoid baseline noise (This may be above or below the baseline). Threshold Mode is only used to set the travel time thresholds.

On the Waveform Window, select Source – Normal Mode.


On the Acquisition Window select Action – Calibrate – Shop / Free Pipe Zero Cal. A window will appear to sample the base line noise.

🕉 Warrior	Logging System 📃 🛽	
File Service	Action Edit Monitor	
Service: CS Database: (Dataset: fie Realtime Ac	Caliper Control Relay Control	g Line
SCBL Pipe Signal Calibration	Calibrate 🕨	
SCBL Pipe Zero Calibration SCBL Air Zero Calibration 🛛 😽	Verify Plot Cal Report	
5CBL Wellsite Internal Cal 5urface Line Tension Tool Voltage and Current Temperature	Record Up Record Down Record on Time	
Gamma Ray CS8_GR_TEL_USR sn CS5M sensor	Replay Independent Replay	
	Depth Shift Auto Correlation Curves	
	Preview Up Preview Down	

Target Baseline Amplitude	0	mV	Accept Cancel
Reading of 3FT Baseline		— v	Lancei
Reading of CAL Baseline		v	
Reading of 5FT Baseline		v	
Reading of SUM Baseline		v	
Reading of S1 Baseline		v	
Reading of S2 Baseline		v	22 Canala
Reading of S3 Baseline		v	<mark><< Sample </mark>
Reading of S4 Baseline		V	v
Reading of S5 Baseline		v	
Reading of S6 Baseline		v	
Reading of S7 Baseline		v	
Reading of S8 Baseline		v	

FIG: 30.13 Zero Baseline Calibration

Make sure the gates for all signals are on the flat part of baseline before the first arrival. These values will be updated when doing the well site air zero cal.

Click on the <<sample button. The Sample & Average Sensor(s) box will appear. Click on the begin button. When the sample is complete, monitor the values they should be very close to zero. If they are click the <u>A</u>ccept button. If the values are not close to zero click the Reject button and correct the problem.

	SCBL Zero Base Reading of 3 Reading of C Reading of 5 Reading of 51	T Baseline AL Baseline T Baseline	
Sensor	Instantaneous	Average	Units
WVF3FT	0.0439	0.0000	V
WVFCAL	0.0537	0.0000	V
WVF5FT	0.0122	0.0000	V
WVFSUM	0.0391	0.0000	V
WVFS1	0.0452	0.0000	V
WVFS2	0.0366	0.0000	V
WVFS3	0.0342	0.0000	V
WVFS4	0.0317	0.0000	V
WVFS5	0.0354	0.0000	V
WVES6	0.0439	0.0000	V
WVFS7	0.0574	0.0000	Ŷ
WVFS8	0.0488	0.0000	ý
eriod: 0.1 se	c Total: 10 sec		Begin

FIG: 30.15 Sensors signals

Instantaneous	Average	Units
0.0427	0.0433	V
0.0537	0.0526	V
0.0134	0.0283	V
0.0403	0.0403	V
0.0452	0.0459	Ý
0.0366	0.0375	Ý
0.0342	0.0340	Ý
0.0317	0.0326	V
0.0354	0.0358	V V V
0.0439	0.0435	Ý
0.0574	0.0568	V
0.0488	0.0496	Ý
	0.0134 0.0403 0.0452 0.0366 0.0342 0.0317 0.0354 0.0439 0.0439	0.0134 0.0283 0.0403 0.0403 0.0452 0.0459 0.0366 0.0375 0.0342 0.0340 0.0317 0.0326 0.0354 0.0358 0.0354 0.0358 0.0439 0.0435 0.0454 0.0458

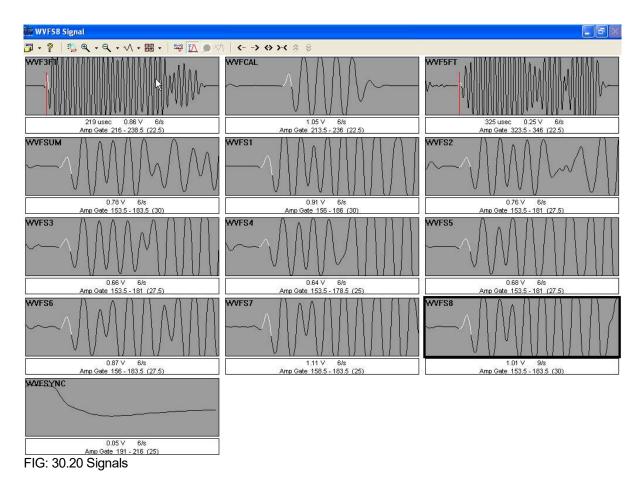
FIG: 30.16 Sensors Value signals

The SCBL Zero Baseline Calibration box will appear check that the values are all close to zero and click <u>A</u>ccept.

Reading of CAL Baseline 0.0526489 V Reading of SFT Baseline 0.0283081 V Reading of SUM Baseline 0.0402588 V Reading of S1 Baseline 0.0458618 V Reading of S2 Baseline 0.0375 V Reading of S3 Baseline 0.0329966 V Reading of S4 Baseline 0.0326294 V Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V	Target Baseline Amplitude	0	mV	Accept
Reading of CAL Baseline 0.0526489 V Reading of SFT Baseline 0.0283081 V Reading of SUM Baseline 0.0402588 V Reading of S1 Baseline 0.0458618 V Reading of S2 Baseline 0.0375 V Reading of S3 Baseline 0.032694 V Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V				Cancel
Reading of 5FT Baseline 0.0283081 V Reading of SUM Baseline 0.0402588 V Reading of S1 Baseline 0.0458618 V Reading of S2 Baseline 0.0375 V Reading of S3 Baseline 0.0339966 V Reading of S4 Baseline 0.0326294 V Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V	Reading of 3FT Baseline	0.0433105	V	
Reading of SUM Baseline 0.0402588 V Reading of S1 Baseline 0.0458618 V Reading of S2 Baseline 0.0375 V Reading of S3 Baseline 0.0339966 V Reading of S4 Baseline 0.0326294 V Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V	Reading of CAL Baseline	0.0526489	v	
Reading of S1 Baseline 0.0458618 V Reading of S2 Baseline 0.0375 V Reading of S3 Baseline 0.0339966 V Reading of S4 Baseline 0.0326294 V Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V	Reading of 5FT Baseline	0.0283081	Γv -	
Reading of S2 Baseline 0.0375 V <<< Sample Reading of S3 Baseline 0.0339966 V <<< Sample	Reading of SUM Baseline	0.0402588	V	
Reading of S3 Baseline 0.0339966 V Reading of S4 Baseline 0.0326294 V Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V	Reading of S1 Baseline	0.0458618	ν.	
Reading of S3 Baseline 0.0339966 V Reading of S4 Baseline 0.0326294 V Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V	Reading of S2 Baseline	0.0375	Γ v	// Cample
Reading of S5 Baseline 0.0357544 V Reading of S6 Baseline 0.0435181 V	Reading of S3 Baseline	0.0339966	ĪV	
Reading of S6 Baseline 0.0435181 V	Reading of S4 Baseline	0.0326294	Γ V	
	Reading of S5 Baseline	0.0357544	V	
Reading of S7 Baseline 0.0568237 V	Reading of S6 Baseline	0.0435181	īν.	
	Reading of S7 Baseline	0.0568237	Γ V	
Reading of S8 Baseline 0.0495728 V	Reading of S8 Baseline	0.0495728	v	

FIG: 30.17 Zero Base line

On the Acquisition Window select Action – Calibrate – Shop/Free Pipe Reference. The SCBL E1 Amplitude Calibration window will appear to sample the first arrival pipe amplitude. The Free Pipe Millvolt of the casing you are sampling is in the cells at the top of the window. The Sector E1 amplitude is normally set to 100 or made to match the 3ft E1 amplitude.


Note: If the value is not there or not correct check to see if the Casing OD and Maximum Amplitude were input in the Variables Window.

😼 Warrior L	ogging System	
File Service	Action Edit Monitor	
Service: CS Database: c Dataset: fiel	Power Control Caliper Control Relay Control	.ong Line
Realtime Ac	Stop	
5CBL Pipe Signal Calibration	Calibrate	
SCBL Pipe Zero Calibration りくしん いうしん いちしん いちしん いちしん いちしん いちしん いちしん いちしん いち	Verify Plot Cal Report	1
SCBL Wellsite Internal Cal Surface Line Tension Tool Voltage and Current Temperature	Record Up Record Down Record on Time	Control
Gamma Ray CS8_GR_TEL_USR sn CSSM sensor	Replay Independent Replay	
	Depth Shift Auto Correlation Curves	
	Preview Up Preview Down Preview on Time	

FIG: 30.18 Pipe signal Calibration

💻 SCBL E1 Amplitude Calibr	ation - CSSM		
Target Pipe E1 Amplitude	71.921	mV	Accept
Target Sector E1 Amplitude	100		Cancel
Reading of 3FT E1 Signal		- v	
Reading of CAL E1 Signal		- v	
Reading of 5FT E1 Signal		- v	
Reading of SUM E1 Signal		- v	
Reading of S1 E1 Signal		- v	
Reading of S2 E1 Signal		- v	<< Sample
Reading of S3 E1 Signal		- v	
Reading of S4 E1 Signal		- v	
Reading of S5 E1 Signal		- v	
Reading of S6 E1 Signal		- v	
Reading of S7 E1 Signal		- v	
Reading of S8 E1 Signal		- v	
F	10		-

FIG: 30.19 Amplitude Calibration

Make sure the gates for all signals are on the positive part of the first arrival. Click on the <<sample button. The Sample & Average Sensor(s) box will appear.

	SCBL E1 Amplity Reading of 3F Reading of C4 Reading of 5F Reading of 5F	T E1 Signal AL E1 Signal T E1 Signal	1
Sensor	Instantaneous	Average	Units
WVF3FT WVFCAL WVFSFT WVFSUM WVFS1 WVFS2 WVFS3 WVFS4 WVFS5 WVFS5 WVFS6 WVFS6 WVFS8	0.2209 0.2759 0.1270 0.2136 0.2368 0.1892 0.1746 0.1648 0.1831 0.2234 0.2930 0.2515	0.2238 0.2725 0.1473 0.2089 0.2333 0.1937 0.1749 0.1687 0.1838 0.2253 0.2253 0.2952 0.2571	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
00% Complete	1		Accep Rejec

FIG: 30.21 Sample Signals

Select <<Sample. After the sampling has finished select Accept. The calibration gains and offsets for each waveform are displayed. The offsets on all waveforms should be near zero. The gains should range from 20 to150. Select OK.

	Gain	Offset
=T	89.8793	-1.8290
AL	72,4695	-0.2318
T	136.7285	5-2.9993
UM	94.8923	-0.9105
51	115.5854	-3.6135
52	143.9137	-4.8346
3	159.6165	5-2.2193
4	159.1298	0.5128
5	151.9288	3-2.1866
56	126.6758	3-4.7473
57	95.6708	-3.6320
58	107.8008	3-2.6661

FIG: 30.22 Amplitude Calibration Results

The SCBL E1 Amplitude Calibration window will appear with the raw voltage readings displayed. Select <u>Accept</u>.

Target Pipe E1 Amplitude	71.921	mV	Accept
Target Sector E1 Amplitude	100		Cancel
Reading of 3FT E1 Signal	0.820544	- v	
Reading of CAL E1 Signal	0.99563	- v	
Reading of 5FT E1 Signal	0.547949	- v	
Reading of SUM E1 Signal	0.767517	- v	
Reading of S1 E1 Signal	0.896423	- v	
Reading of S2 E1 Signal	0.728455	- v	<< Sample
Reading of S3 E1 Signal	0.640405	- v	(v sample
Reading of S4 E1 Signal	0.625195	- v	
Reading of S5 E1 Signal	0.672595	- v	
Reading of S6 E1 Signal	0.826892	- v	
Reading of S7 E1 Signal	1.08322	- v	
Reading of S8 E1 Signal	0.952368	- v	

FIG: 30.23 E1 Amplitude Calibration

Note: If you need to make more than one calibration for each tool you must enter a different Serial Number.

Do not do a downhole cal with the same Serial Number because if you accept the cal and it is no good you will have over written the good shop cal, which can be utilized, if there is no Free Pipe found in the well.

Note: To create In the Warrior Screen select Utilities – Edit Logging Tool details then click Edit Tool. A list will come up, select SCBL and enter the "alias" Serial Number which you will use to do other cals on the same tool without over writing the original. Then Click Create – Tool. Enter a new serial number.

30.4 Wellsite Calibration Procedures:

The GR can be calibrated like any other GR tool. Select Action – Calibrate – Gamma Ray. Follow the onscreen menu.

30.4.1 SCBL Air Zero Cal.

SCBL Air Zero Cal: The following step is performed with the tool hanging in the air. On the Acquisition Window select Action/ Calibrate/SCBL Well Site Air Zero Cal. The SCBL Air Zero Cal window will appear.

FIG: 30.24 Air Zero calibration

SCBL Wellsite Zero Cal - CS	SM	
		Accept Cancel
Zero Reading of WVF3FT E1	V	
Zero Reading of WVF5FT E1	V	
Zero Reading of WVFSUM E1	V	
Zero Reading of WVFS1 E1	V	
Zero Reading of WVFS2E1	V	
Zero Reading of WVFS3 E1	V	<< Sample
Zero Reading of WVFS4 E1	V	
Zero Reading of WVFS5 E1	V	
Zero Reading of WVFS6 E1	V	
Zero Reading of WVFS7 E1	V	
Zero Reading of WVFS8 E1	V	
		_
1		

FIG: 30.25 Air Zero calibration

Ensure the gates are set in the proper position for the size pipe to be logged select <<Sample. The Sample & Average Sensor(s) box will appear. Select Begin.

	SCBL Wellsi Zero Reading o Zero Reading of Zero Reading of	f WVF3FT E1 f WVF5FT E1 WVFSUM E	I
Sensor	Instantaneous	Average	Units
WVF3FT	0.0305	0.0313	V
WVF5FT	0.0281	0.0205	V
WVFSUM	0.0293	0.0293	V
WVFS1	0.0330	0.0337	V
WVFS2	0.0269	0.0272	V
WVFS3	0.0244	0.0246	V
WVFS4	0.0232	0.0237	Ý
WVFS5	0.0256	0.0260	V
WVFS6	0.0317	0.0317	V
WVFS7	0.0427	0.0414	V
WVFS8	0.0366	0.0361	V
00% C			Accept
00% Complet	e		Reject

FIG: 30.26 Air Zero Values

All the values should be close to zero, and are used to establish the offset to be applied to the primary gain and offset established in the Shop Calibration. Select <u>Accept</u>. Select <u>Accept</u> in the SCBL Air Zero Cal Window.

Zero Reading of WVF5FT E1 0.020 Zero Reading of WVF5UM E1 0.023 Zero Reading of WVFS1 E1 0.033 Zero Reading of WVFS2 E1 0.023	12622 05444 93335 36548	V V V	Cancel
Zero Reading of WVF5FT E1 0.020 Zero Reading of WVF5UM E1 0.023 Zero Reading of WVFS1 E1 0.033 Zero Reading of WVFS2 E1 0.023	05444 93335	v v	
Zero Reading of WVF5FT E1 0.020 Zero Reading of WVF5UM E1 0.023 Zero Reading of WVFS1 E1 0.033 Zero Reading of WVFS2 E1 0.023	05444 93335	v v	
Zero Reading of WVFSUM E1 0.023 Zero Reading of WVFS1 E1 0.033 Zero Reading of WVFS2 E1 0.027	93335	Ŷ	
Zero Reading of WVFS1 E1 0.033 Zero Reading of WVFS2 E1 0.027			
Zero Reading of WVFS2 E1 0.027		V	
	71606	v	
Zero Reading of WVFS3 E1 [0.024	46338	v.	<< Sample
	36572	v	
	59521	v	
Zero Reading of WVFS6 E1 0.031	16528	v	
Zero Reading of WVFS7 E1 0.041	1394	٧	
Zero Reading of WVFS8 E1 0.036	51084	V	

FIG: 30.27 Air Zero reading

30.4.2 SCBL Wellsite Internal Ref Cal

SCBL Wellsite Internal Ref Cal: The following step should be performed down hole. The CAL pulse is recalibrated to compensate for line resistance and temperature. The new values are used to normalize all waveform amplitude values back to the shop calibration.

On the Acquisition Window select Action/ Calibrate/ Well Site Internal Ref Cal. The SCBL Internal Reference Cal window will appear



FIG: 30.28 Wellsite Internal Calibration

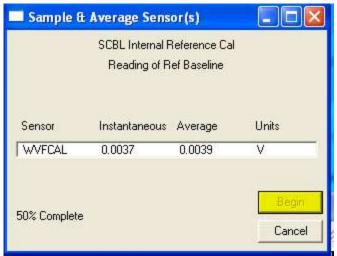


FIG: 30.29 Internal Reference Calibration

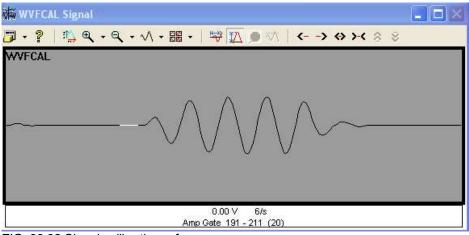

Reference Pulse Zero		0.00319824	Γv	Accept
Reference Pulse Maxi	mum	0.99563	V	Cancel
Reading of Ref Baseli	ne	0.0183716	- v	<< Sample
Reading of Ref Maxim	um		- v	<< Sample
	SCBL Internal Re	eference Cal		
	Reading of Re	f Maximum		
Sensor	Reading of Re		Units	
Sensor			Units V	H

FIG: 30.30 Zero Reference

Reference Pulse Zero	0.00319824	V	Accep
Reference Pulse Maximum	0.99563	V	Cancel
Reading of Ref Baseline	0.0183716	v	<< Sample
Reading of Ref Maximum	0.986133	V	<< Sample
Correction Gain = 1.0255 Correction Offset = -0.0156			-

FIG: 30.31 Gain and Offset

Move the gate in the WVFCAL Signal window to the flat part of the baseline in front of the first positive arrival. Select <<Sample on the Reading of Ref Baseline. The Sample & Average Sensor(s) window will appear.

Sample &	Average Sens SCBL Internal F Reading of R	Reference Cal	
Sensor WVFCAL	Instantaneous 0.0159	Average 0.0046	Units V
70% Complete			Begin Cancel

FIG: 30.33 Calibration value

Select Begin the values should be very close to zero. Select Accept.

Move the gate in the WVFCAL Signal window to gate the first positive arrival. Select <<Sample on the Reading of Ref Maximum. The Sample & Average Sensor(s) window will appear.

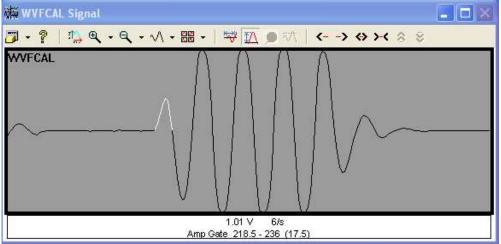


FIG: 30.34 Signal Reference Maximum value

🔲 Sample &	Average Sens	or(s)					
		SCBL Internal Reference Cal Reading of Ref Maximum					
Sensor	Instantaneous	Average	Units				
WVFCAL	1.0217	1.0030	V				
40% Complete			Begin Cancel				

FIG: 30.35 Reference Maximum value

Select <<Begin on the Sample & Average Sensor(s). Select Accept. A gain and offset value will be shown in the SCBL Internal Reference Cal window. The gain should be very close to 1.0 and the offset value will be very close to 0. If they are not, redo your calibrations to ensure that the correct voltage is set for the WVFCAL and the gate was set in the proper position for each reading. Select Accept in the SCBL internal Reference Cal window.

SCBL Internal Reference (Cal - CSSM		
Reference Pulse Zero	0.00319824	V	Accept
Reference Pulse Maximum	0.99563	V	Cancel
Reading of Ref Baseline	0.0183716	v	<< Sample
Reading of Ref Maximum	0.986133	V	<< Sample
Correction Gain = 1.0255 Correction Offset = -0.0156			

FIG: 30.36 Reference Maximum value

Go in the hole monitoring the various waveforms as shown below. Ensure that the gates are over the first positive signal and that the relative positions of the gates are correct. The gate for the 5ft receiver should be approximately 114 microseconds later in time than the 3ft. The various sector gates should be approximately 57 microseconds earlier in time than the 3ft (for a 2 foot sector spacing).

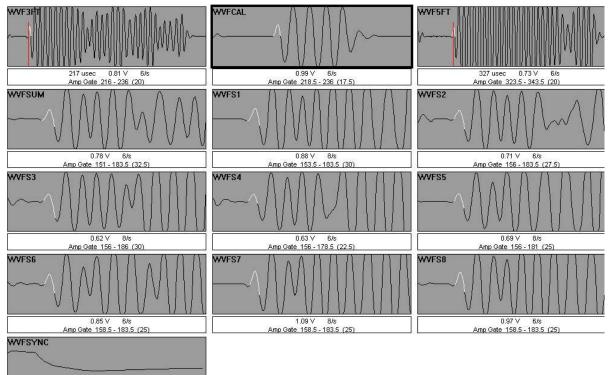
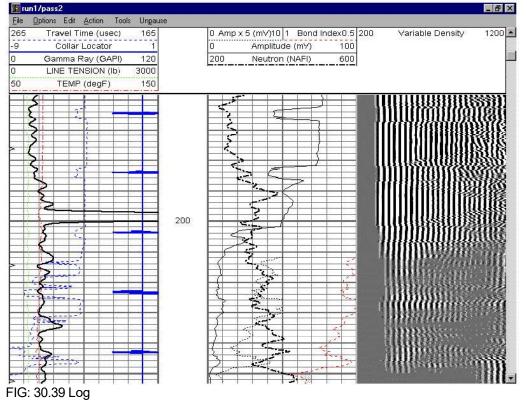


FIG: 30.37 Signals

All waveforms may be shown by selecting Options - Enable from the waveform window. After the gates are adjusted, open the Monitor -Outputs Window and monitor the various outputs.

🗖 Output	s		
Name	Source	Value	Units
AMP3FT	[CS8SCBL	19.8975	m٧
TT3FT	[CS8SCBL	218.9651	usec
AMPCAL	[CS8SCBL	0.2441	m٧
AMPSET	[CS8SCBL	0.0586	m٧
TT5FT	[CS8SCBL	327.5909	usec
AMPSUM	[CS8SCBL	0.1807	mγ
AMPS1	[CS8SCBL	0.2902	
AMPS2	[CS8SCBL	0.2308	
AMPS3	[CS8SCBL	0.2189	
AMPS4	[CS8SCBL	0.2037	
AMPS5	[CS8SCBL	0.2240	
AMPS6	[CS8SCBL	0.2733	
AMPS7	[CS8SCBL	0.3530	
AMPS8	[CS8SCBL	0.3072	
AMPMIN	[CS8SCBL	0.2037	
AMPMAX	[CS8SCBL	0.3530	
AMPAVG	[CS8SCBL	0.2627	
ATT3	[CS8SCBL	-4.5204	db/ft
BONDIX	[CS8SCBL	0.3430	
LSPD	[STD]	-20,6300	ft/min
LTEN	[STD]	1.0306	Ь
TCURR	[STD]	0.0644	mA
TVOLT	[STD]	0.0089	۷
ELTIM	[STD]	455.8200	sec
ADPTH	[STD]	9782.0498	ft
MINMK	[STD]	0.0000	
LTENRT	[STD]	1.0306	Ь
DLTENRT	[STD]	0.0009	Ь
LSPDRT	[STD]	-20.6300	ft/min
HVOLTA	[STD]	0.0056	V
TEMP	[CS85CBL	2020.0000	degF
DTMP	[CS85CBL	0.0000	degF
CCL	[CS8_GR	7739.0000	
CCLRT	[CS8_GR	7739.0000	
GR	[CS8_GR	14.0000	
THV	[CS8_GR	12018.0000	٧

FIG: 30.38 Outputs


The maximum of the 3ft and sector outputs should be approximately those shown in appendix I for a given size casing. The minimum values in bonded casing should also match the indicated values. Sector values will tend to be slightly above indicated values in bonded pipe.

30.4.3 Setting Travel Time:

While monitoring the 3ft Waveform, choose Source - Threshold Setup Mode. Using the right hand scroll bar to set the Threshold Setting. The Travel Time should read within 10 microseconds of the value listed in Appendix I. This threshold should be kept as close to the baseline as possible without the threshold picking up baseline noise and triggering early.

30.5 Running the Log:

1 11/16" CSSM Radial Bo	ond Tool	
CCL Calibrations –	Gain = 0.1	Offset = -12.8
Temp Calibrations -	Gain =1.8	Offset = 32
3 1/8" CSSM Radial Bond	d Tool	
CCL Calibrations –	Gain = 0.0005	Offset = -3.7
Temp Calibrations -	Gain =0.02	Offset = 0
An example Radial Bond	presentation is shown be	ow.

The additional Radial Bond presentation is shown below. This presentation shows the eight sector readings and the waveforms of each as a signature presentation.

ile Options	s Edit <u>A</u> ction Tools	Ungaus	e										
0C- (lb)500	0 AMPAVG (mV)	100 0	AMPS1	(mV)	50 0	AMPS:	2 (mV)	50	100	WVFS1	350 1	Cement Map	8
	0 AMPMAX (mV)	100 0	AMPS3	I (m∀)	50 0	AMPS4	4 (mV)	50	100	WVFS2	350		
	0 AMPMIN (mV)	100 0	AMPS5	i (m∀)	50 0	AMPS	6 (mV)	50	100	WVFS3	350		
	260 TT (usec)	160 0	AMPS7	(mV)	50 0	AMPS	3 (mV)	50	100	WVFS4	350		
	-9 CCL	1 50	AMPS1	(mV)	100 50	AMPS:	2 (mV)	100	100	WVFS5	350		
	0 GR (GAPI)	120 50	AMPS3	I (m∀)	100 50	AMPS4	4 (mV)	100	100	WVFS6	350		
	27 	50	AMPS5	i (mV)	100 50	AMPS	6 (mV)	100	100	WVFS7	350		
		50	AMPS7	(mV)	100 50	AMPS	3 (mV)	100	100	WVFS8	350		
			2	5					ļ.,	$\gamma \Lambda_{a}$	AV/A		
				-						~^^^	XA		.3898
					and a			2	1	$\neg \land \land$	A A		
					D	7		X		-	AVA .		
					1			1	2	-AA	N'A		
200		-			2 5.		5			-	∧ ^		
						1			1				
	Store i		100			See.	27.21		-		~~		())))))
	l'adat		5 C			19					\sim		
	22-1		21			22				\sim	~~		
	- See					N.					~~	M	
						S							
	St i		5			Sec.					2		
	5		81			124			-		~		3
	2 C										~~		10
		-				C.					~~		10c-
			£,								\sim		
	R	5				1			-	100 - 50 51 - 100 - 10	<u> </u>		
	3 /				6	1							

FIG: 30.40 Log Additional Radial Bond Presentation with Cement Map

🕷 run1/pa	1551								
File Options	Edit Action Tools	Unpause							
i 🖉 🕷 🗳) 8 🕴								
52.54.5 Y	320 TT (usec) 22	0 0 AMP (mV) 100	O AMF	AVG 150	200 VI	DL 1200	Contract Contract	AD 8
(lb) 0 2000		1 0 AMPx5 (m	V) 20		MAX 150			10	60
0. (2000)	0 GR 15	0		0 AMF	PMIN 150	d2			
						111111111			
					*>				
					**				
	Presentation Op	tions		· · · · · · · · · · · ·	×				
	Start At	8666.36							
	Stop At	•		A	aximize				
	Presentation File	scbl.PRS		<< B	rowse				
8450	Yertical Scale	240	-	(5"7100)					
	English Depth	€ Up	🗭 En	glish Units					
	Metric Depth	C Down		tric Units					
	C Time	Normal Speed	C Us	er Defined					
	C Other	C Fast Speed			or I				
	📕 🗐 Show tool posit	ion			OK				
	📕 🔽 Use private cop	by of presentation wi	th this lo	g	Cancel				

FIG: 30.41 Presentation Options

The Presentation may be changed by clicking on *Options* in the Interactive Plot Window. This brings up the window shown below. Either browse to select the presentation required, or edit the presentation name to the desired presentation.

Under Plot Job Editor, calling up Single Log pass will bring up a similar window. Editing the Format field will allow you to show the same pass, using different presentations.

Note: This same window allows you to show the same pass with different logging scales.

Note: Annotations must be made from the Interactive Replay Window for each presentation, as the annotations will not be transferred from one presentation to another.

Presentati	ion Options		×
Туре	Log	_	
Database	c:\warrior\data\	democss.db	Lizz Burnel
Dataset	field/well/run1/p	pass1	Krowse
Format	scbl.PRS	-	<< Browse
Start At	8666.36		
Stop At	-178957	<< Maximize	
Y Scale	240	-	<u>OK</u>
Plot at	half width		Cancel

FIG: 30.42 Presentation Options Type

APPENDIX A

PIPE			1 11/16" RCB	3 1/8" RC	BL			
OD	WEIGHT	r id	RADIAL	3 FT	5 FT	RADIAL	<u>3 FT</u>	5 FT
2.875	6.500	2.441	128	204	318			
	7.900	2.323	126	202	316			
	8.700	2.259	125	201	315			
	9.500	2.195	123	199	313			
	10.700	2.091	121	197	311			
	11.000	2.065	121	197	311			
3.500	9.300	2.992	139	215	329			
	10.300	2.922	138	214	328			
	12.800	2.764	135	211	325			
	12.950	2.750	134	210	324			
	15.800	2.548	130	206	320			
	16.700	2.480	129	205	319			
4.000	11.850	3.476	149	225	339			
	14.000	3.340	146	222	336			
4.500	9.500	4.090	161	237	351	151	208	322
	10.500	4.052	160	236	350	150	207	321
	11.600	4.000	159	235	349	149	206	320
	13.500	3.920	157	233	347	148	205	319
	15.100	3.826	155	231	345	146	203	317
5.000	11.500	4.560	170	246	360	160	217	331
	13.000	4.494	169	245	359	159	216	330
	15.000	4.408	167	243	357	157	214	328
	18.000	4.276	164	240	354	155	212	326
	20.300	4.184	162	238	352	153	210	324
	23.200	4.044	160	236	350	150	207	321
	24.200	4.000	159	235	349	149	206	320
5.500	13.000	5.044	179	255	369	170	227	341
	14.000	5.012	179	255	369	169	226	340
	15.500	4.950	177	253	367	168	225	339
	17.000	4.892	176	252	366	167	224	338
	20.000	4.778	174	250	364	165	222	336
	23.000	4.670	172	248	362	163	220	334
	26.000	4.548	170	246	360	160	217	331

6.000	15.000	5.524	189	265	379	179	236	350
	18.000	5.424	187	263	377	177	234	348
	20.000	5.352	185	261	375	176	233	347
	23.000	5.240	183	259	373	174	231	345
	26.000	5.132	181	257	371	172	229	343
6.625	17.000	6.135	201	277	391	191	248	362
	20.000	6.047	199	275	389	190	247	361
	24.000	5.921	197	273	387	187	244	358
	28.000	5.791	194	270	384	185	242	356
	32.000	5.675	192	268	382	182	239	353
7.000	17.000	6.538	209	285	399	199	256	370
	20.000	6.456	207	283	397	198	255	369
	23.000	6.366	205	281	395	196	253	367
	26.000	6.276	203	279	393	194	251	365
	29.000	6.184	202	278	392	192	249	363
	32.000	6.094	200	276	390	190	247	361
	35.000	6.004	198	274	388	189	246	360
	38.000	5.920	196	272	386	187	244	358
7.625	20.000	7.125	100		000	211	268	382
1.020	24.000	7.025				209	266	380
	26.400	6.969				208	265	379
	29.700	6.875				206	263	377
	33.700	6.765				200	261	375
	39.000	6.625				204	258	372
		6.435				197	250 254	368
8.625	24.000	8.097				230	287	401
0.020	24.000	8.017				230	285	399
	32.000	7.921				226	283	397 205
	36.000	7.825				224	281	395
	40.000	7.725				222	279	393
	44.000	7.625				220	277	391
0.005	49.000	7.511				218	275	389
9.625	29.300					249	306	420
	32.300					247	304	418
	36.000					246	303	417
	40.000					244	301	415
	43.500	8.755				243	300	414
	47.000					241	298	412
	53.500	8.535				238	295	409
	58.400	8.435				236	293	407
	61.100	8.375				235	292	406
						230	287	401

APPENDIX B

30.6 Map

30.6.1 Introduction

The heart of the Radial Bond Tool is the segmented crystal found below the transmitter. This crystal is cylindrical in shape. It is divided into 6 or 8 segments, each of which covers a section of the well bore.

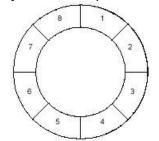


FIG: 30.39 Sector Map

30.6.2 The Calibration Procedure

When the Radial Bond Tool is calibrated, the sonde section is rigidly centralized in a 5-1/2" calibration chamber and the chamber is pressured up to 500 lbs of water pressure. The tool is powered up and the calibration signal is set to a reference voltage, using pots within the electronics section of the tool. Gates are then set over E1 of the 3ft, 5ft, and each of the segmented crystals. Each of these signals is then set to 1 Volt, again using pots within the electronics section.

Using the SCBL Shop/Free Pipe Calibration routine, the tool is then calibrated so that each of the signals reads 100 millivolts within the test chamber. Then, the test chamber is depressurized, and the tool is rotated 180 degrees. The test chamber is again pressurized and the calibrations are checked again to assure that the tool was properly centralized during the calibration procedure.

NOTE: While it is true that the expected amplitude reading for the 3ft receiver in 5-1/2" casing is 72 millivolts, that is the expected reading with pressurized water on the backside of the casing. The presence of air on the backside allows the test chamber to vibrate more freely than 5-1/2" casing. The expected readings of the 3ft in various sizes of pipe, are based upon a tool calibrated to 100 millivolts in a 5-1/2" test chamber with air on the backside.

Edit C	alibrations						
<u>E</u> dit <u>S</u> ele	tot						
Name	Type	Gain	Hi Read	Hi Ref	Lo Read	Lo Ref	Offset
AMP3FT	Lin2Pt	97.649	1.009	100.000	-0.015	0.000	3.004 🔺
WS_3FT	Lin2Pt	1.008	0.000	0.000	0.005	0.000	-0.021 🦷
AMPCAL	Lin2Pt	66.102	1.503	100.000	-0.009	0.000	0.625
WS CAL	Lin2Pt	1.008	1.493	1.503	-0.008	-0.009	-0.001
AMP5FT	Lin2Pt	98.521	1.000	100.000	-0.015	0.000	1.491
WS 5FT	Lin2Pt	1.008	0.000	0.000	-0.006	0.000	-0.009
AMPSUM	Lin2Pt	99.273	0.993	100.000	-0.014	0.000	1.403
WS_SUM	Lin2Pt	1.008	0.000	0.000	-0.008	0.000	-0.006
AMPS1	Lin2Pt	97.452	1.011	100.000	-0.015	0.000	1.482
WS S1	Lin2Pt	1.008	0.000	0.000	-0.008	0.000	-0.007
AMPS2	Lin2Pt	98.770	0.997	100.000	-0.015	0.000	1.505
WS S2	Lin2Pt	1.008	0.000	0.000	-0.006	0.000	-0.009
AMPS3	Lin2Pt	98.485	1.002	100.000	-0.014	0.000	1.366
WS S3	Lin2Pt	1.008	0.000	0.000	-0.008	0.000	-0.006
AMPS4	Lin2Pt	97.953	1.008	100.000	-0.013	0.000	1.296
WS S4	Lin2Pt	1.008	0.000	0.000	-0.007	0.000	-0.006
AMPS5	Lin2Pt	97.091	1.016	100.000	-0.014	0.000	1.337
WS_S5	Lin2Pt	1.008	0.000	0.000	-0.003	0.000	-0.011
AMPS6	Lin2Pt	98.266	1.004	100.000	-0.014	0.000	1.346
WS S6	Lin2Pt	1.008	0.000	0.000	-0.008	0.000	-0.006 -
AMPS7	Lin2Pt	99.237	0.994	100.000	-0.013	0.000	1.325
WS_S7	Lin2Pt	1.008	0.000	0.000	-0.008	0.000	-0.006
AMPS8	Lin2Pt	99.230	0.995	100.000	-0.013	0.000	1.308
WS S8	Lin2Pt	1.008	0.000	0.000	-0.007	0.000	-0.006

30.6.3 The Radial Readings

FIG: 30.43 Radial Readings

With the Shop Calibration recorded in the Tools.ini file, all that is left for the Engineer to do at the well site, is to perform the SCBL Wellsite Internal Reference Cal and the SCBL Air Zero Cal. These calibrations generate a secondary Gain and Offset that are applied to readings from the SCBL outputs before they are plotted and recorded. These secondary calibrations are identified by WS_ and are listed directly under the curve to which they are applied.

When the SCBL Internal Reference Calibration is performed, the High and Lo Read of the AMPCAL from the Shop Calibration are used as the Hi and Lo Ref for the WS_CAL and the Calibration Signal is calibrated back to the readings taken during the Shop Calibration. The Gain derived from this calibration is then applied to ALL of the Bond curves. This calibration adjusts the Warrior Logging System for differences in line length and variations in CBL/BHC Signal gains.

When the SCBL Air Zero Cal is performed, the gates of all the bond signals are set to their approximate values for the casing size anticipated by choosing the appropriate Setup (under *Load Setup*), while to tool is in air. This calibration generates the secondary calibration offset, which is applied to each of the Bond curves individually.

When using Shop Calibrations for logging, both of these calibrations must be done before going in the hole. If, for some reason a Wellsite Calibration is performed, there is no need to perform these two additional calibrations. Wellsite calibrations are not recommended except under unusual situations.

30.6.4 The Cement Map

The Cement Map is a graphical representation of the response of the sector measurements. The shading of the cement map is purely representative of the recorded amplitude readings from the various sectors. Look back to the representation of the segmented crystal shown at the beginning of this bulletin, and visualize the sectors laid out horizontally.

1 Cement Map 8

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

FIG: 30.44 Cement Map

Each of the individual sectors is represented by a section of the cement map, as shown below. The shade applied to each section of the map is a function of the amplitude of that sector as recorded.

The Warrior Logging System uses an algorithm to determine the shading associated with the amplitude recorded, based on several factors. These factors include:

The number of grayscales and the density of the grayscales in the Cement Map, as applied in the screen and printer setup within the Warrior.ini file.

The Filter level associated with each of the Sector Curves.

The amplitude reading of adjacent sectors.

The High Reference recorded in the Shop Calibration associated with each Sector Curve.

The Black and White values set in the presentation file.

Data Source	Style		
DB Item: SECTORS << Browse	Set Intensi	tubu: un n i i in	
⊂Variable ⊙Data ⊂List	CPercenta	+ +DL DIACK LEVEL 10	•
Position	Specific	Values	
Frack #: 12 Left value		VDL White Level: 60	
Right value 8	Use % for s	onic VDL, specific values for map	IS 2
Presentation Type	Scale Type	Label and Scales	1
C Curve C Variable Density C Pattern Strip	Label	VAD	ОК
C Tabular C Signature C Graphic Strip	Color Map	Sectors	Cancel

FIG: 30.45 Sectors

The only factor under control of the engineer is the Black and White values within the presentation file. The purpose of the Cement Map is to graphically illustrate small channels that may pose a problem. With that end in mind, the following is the proscribed setup for the Cement Map.

With the Black and White Levels set as above, the grays scales of the Cement Map will change as follows: 1. Amplitudes less than 10mv Black

- 2. Amplitudes greater than 10.0mv and less than 26.7mv Dark Gray
- 3. Amplitudes greater than 26.7mv and less than 43.3mv Medium Gray
- 4. Amplitudes greater than 43.3mv and less than 60.0mv

Light Gray White

5. Amplitudes greater than 60.0mv

If different gray scales are needed for a particular application, contact Technical Support.

30.6.5 Logging Conditions

The Cement Map is a visual representation of the cement conditions behind the pipe. The Sector Crystal is not free to rotate within the tool, and the cement and casing are not free to rotate. However, the tool itself is free to rotate with the well, and it is expected that it will. For this reason, apparent "channels" may rotate within the cement map while running repeats, and that the Cement Map may not repeat exactly.

The Cement Map also becomes an important aid to quickly identify problems in tool setup or logging procedures.